The equivalence of bar recursion and open recursion
نویسنده
چکیده
Several extensions of Gödel’s system T with new forms of recursion have been designed for the purpose of giving a computational interpretation to classical analysis. One can organise many of these extensions into two groups: those based on bar recursion, which include Spector’s original bar recursion, modified bar recursion and the more recent products of selections functions, or those based on open recursion which in particular include the symmetric Berardi-Bezem-Coquand (BBC) functional. We relate these two groups by showing that both open recursion and the BBC functional are primitive recursively equivalent to a variant of modified bar recursion. Our results, in combination with existing research, essentially complete the classification up to primitive recursive equivalence of those extensions of system T used to give a direct computational interpretation to choice principles.
منابع مشابه
Abstracts of the invited speakers
s of the invited speakers Dag Normann, University of Oslo, Norway Revisiting Transfinite Types In this talk I will reconstruct spaces of countable and uncountable transfinite types, this time using limit spaces. This approach turns out to give a better access to internal concepts of computability for such spaces. The talk will be a report on ongoing research. This research is rooted in earlier ...
متن کاملMartin’s Conjecture, Arithmetic Equivalence, and Countable Borel Equivalence Relations
There is a fascinating interplay and overlap between recursion theory and descriptive set theory. A particularly beautiful source of such interaction has been Martin’s conjecture on Turing invariant functions. This longstanding open problem in recursion theory has connected to many problems in descriptive set theory, particularly in the theory of countable Borel equivalence relations. In this p...
متن کاملCalculation for Energy of (111) Surfaces of Palladium in Tight Binding Model
In this work calculation of energetics of transition metal surfaces is presented. The tight-binding model is employed in order to calculate the energetics. The tight-binding basis set is limited to d orbitals which are valid for elements at the end of transition metals series. In our analysis we concentrated on electronic effects at temperature T=0 K, this means that no entropic term will be pr...
متن کاملModified bar recursion
We introduce a variant of Spector’s bar recursion (called “modified bar recursion”) in finite types to give a realizability interpretation of the classical axiom of countable choice allowing for the extraction of witnesses from proofs of Σ1 formulas in classical analysis. As a second application of modified bar recursion we present a bar recursive definition of the fan functional. Moreover, we ...
متن کاملUnderstanding and Using Spector's Bar Recursive Interpretation of Classical Analysis
This note reexamines Spector’s remarkable computational interpretation of full classical analysis. Spector’s interpretation makes use of a rather abstruse recursion schema, so-called bar recursion, used to interpret the double negation shift DNS. In this note bar recursion is presented as a generalisation of a simpler primitive recursive functional needed for the interpretation of a finite (int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 165 شماره
صفحات -
تاریخ انتشار 2014